Inhibition of methionyl-tRNA synthetase by REP8839 and effects of resistance mutations on enzyme activity.
نویسندگان
چکیده
REP8839 is a selective inhibitor of methionyl-tRNA synthetase (MetRS) with antibacterial activity against a variety of gram-positive organisms. We determined REP8839 potency against Staphylococcus aureus MetRS and assessed its selectivity for bacterial versus human orthologs of MetRS. The inhibition constant (K(i)) of REP8839 was 10 pM for Staphylococcus aureus MetRS. Inhibition of MetRS by REP8839 was competitive with methionine and uncompetitive with ATP. Thus, high physiological ATP levels would actually facilitate optimal binding of the inhibitor. While many gram-positive bacteria, such as Staphylococcus aureus, express exclusively the MetRS1 subtype, many gram-negative bacteria express an alternative homolog called MetRS2. Some gram-positive bacteria, such as Streptococcus pneumoniae and Bacillus anthracis, express both MetRS1 and MetRS2. MetRS2 orthologs were considerably less susceptible to REP8839 inhibition. REP8839 inhibition of human mitochondrial MetRS was 1,000-fold weaker than inhibition of Staphylococcus aureus MetRS; inhibition of human cytoplasmic MetRS was not detectable, corresponding to >1,000,000-fold selectivity for the bacterial target relative to its cytoplasmic counterpart. Mutations in MetRS that confer reduced susceptibility to REP8839 were examined. The mutant MetRS enzymes generally exhibited substantially impaired catalytic activity, particularly in aminoacylation turnover rates. REP8839 K(i) values ranged from 4- to 190,000-fold higher for the mutant enzymes than for wild-type MetRS. These observations provide a potential mechanistic explanation for the reduced growth fitness observed with MetRS mutant strains relative to that with wild-type Staphylococcus aureus.
منابع مشابه
Mode of action and biochemical characterization of REP8839, a novel inhibitor of methionyl-tRNA synthetase.
Aminoacyl-tRNA synthetases have attracted interest as essential and novel targets involved in bacterial protein synthesis. REP8839 is a potent inhibitor of MetS, the methionyl-tRNA synthetase in Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), and in Streptococcus pyogenes. The biochemical activity of REP8839 was shown by specific inhibition of purified S. aureus MetS (5...
متن کاملAntibacterial activity of REP8839, a new antibiotic for topical use.
REP8839 is a novel methionyl-tRNA synthetase (MetS) inhibitor with potent antibacterial activity against clinical isolates of Staphylococcus aureus, Streptococcus pyogenes, and other clinically important gram-positive bacteria but little activity against gram-negative bacteria. All isolates of S. aureus, including strains resistant to methicillin, mupirocin, vancomycin, and linezolid were susce...
متن کاملBrucella melitensis Methionyl-tRNA-Synthetase (MetRS), a Potential Drug Target for Brucellosis
We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundre...
متن کاملInhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases.
Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes that couple cognate tRNAs with amino acids to transmit genomic information for protein translation. The Plasmodium falciparum nuclear genome encodes two P. falciparum methionyl-tRNA synthetases (PfMRS), termed PfMRS(cyt) and PfMRS(api). Phylogenetic analyses revealed that the two proteins are of primitive origin and are related to hete...
متن کاملEditing function of Escherichia coli cysteinyl-tRNA synthetase: cyclization of cysteine to cysteine thiolactone.
A cyclic sulfur compound, identified as cysteine thiolactone by several chemical and enzymatic tests, is formed from cysteine during in vitro tRNA(Cys) aminoacylation catalyzed by Escherichia coli cysteinyl-tRNA synthetase. The mechanism of cysteine thiolactone formation involves enzymatic deacylation of Cys-tRNA(Cys) (k = 0.017 s-1) in which nucleophilic sulfur of the side chain of cysteine in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2009